
Chapter 1

Theoretical bases

Just after the discovery of nuclear magnetic resonance (NMR) in 1945 in bulk mat-

ter [Blo46, Pur46] this phenomenon has become of interest for many structural eluci-

dation techniques. NMR can measure a magnetic moment produced by spin charged

atoms embedded to the strong magnetic field. It took 25 years from continuous wave

(CW) low resolution detection techniques till development of pulse Fourier spectroscopy,

which enables an expansion of modern high-resolution NMR techniques. The response to

a δ-function pulse according to the superposition principle, which is valid in linear sys-

tems, is a linear superposition of the responses of all frequency components called FID

(free induction decay) and the transfer function, called spectrum, can be obtained from

the FID by a Fourier transformation. The Fourier transformation became a routine for

characterization of a spectrum in modern NMR instruments. Further improvements were

made with discovery of a new dimension, where frequency response spectrum S(ω) became

a spectrum of two variables S(ω1, ω2). The two-dimensional (2D) spectroscopy [Ern87]

was able to distinguish between two independent precession periods, i.e. evolution and de-

tection period. The evolution during preceding period is monitored indirectly through the

phase and amplitude of the magnetization at the beginning of the detection period. This

scheme has many crucial advantages, for example, to observe multiple quantum coherence

indirectly.

In this chapter the theoretical bases of NMR will be presented in a very short overview.

We will focus our interest to the solid state NMR with connection to the spin-1/2 systems.

Magic angle spinning experiment for dipolar coupled spin-1/2pair will be also presented. We

will conclude this chapter with the bases of 2D spectroscopy. Deep theoretical descriptions
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6 1.1. Types of interactions in NMR

of NMR can be found in monographs like e.g. Abragam ([Abr61]) and Ernst et al.

([Ern87]). The methods of solid state NMR spectroscopy are fully or partially described in

monographs from Mehring ([Meh83]) and Slichter ([Sli92]). The possible applications on

polymers are discussed in monograph from Schmidt-Rohr/Spiess ([SR94]). In this mono-

graph, for convenience, we will assume all Hamiltonians as the operators correspond to

E/~, where energy eigenvalues are measured in angular frequency units.

1.1 Types of interactions in NMR

The dynamics of N coupled spins is not possible to describe in terms of the motion of

classical magnetization vectors, but it is necessary to treat quantum mechanical formalism.

The most convenient description of quantum mechanical system dynamics can be made

with the help of density operator ρ̂. We will recall some of its basic properties

ρ̂ = ρ̂+, Tr {ρ̂} = 1, ρ̂2 = ρ̂ . (1.1)

For the time-dependent Schröninger equation [Ern87, Sli92], one can derive the equation

of motion for the density operator ρ̂ under Hamiltonian Ĥ

d

dt
ρ̂(t) = −i[Ĥ(t), ρ̂(t)], (1.2)

called Liouville-von Neumann equation or simply density operator equation. Its formal

solution may be written

ρ̂(t) = Û(t) ρ̂(0) Û
+
(t) , (1.3)

with the time evolution unity operator (propagator)

Û(t) = T̂ e
−i

t∫
0

Ĥ(t′) dt′
, (1.4)

where the Dyson time-ordering operator T̂ defines a prescription for evaluating the ex-

ponential functions in cases where the Hamiltonians at different times do not commute,

[Ĥ(t′), Ĥ(t′′)] 6= 0. For the time independent Hamiltonians Ĥ(t) = Ĥ equation (1.4) can

be rewritten in the form

Û(t) = e−iĤ t , (1.5)

where time-ordering operator T̂ has no more importance. The expectation value of an

arbitrary observable operator Â in the Schrödinger representation can be found〈
Â

〉
= Tr

{
Â · ρ̂(t)

}
(1.6)
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by evaluating the trace of the product of the observable operator and density operator.

In most of the cases the complete Hamiltonian Ĥ of the molecular system is enormously

complex, and to derive the exact solutions of equation of motion (1.2) is very complicated.

This is a good reason to describe magnetic resonance experiments by a spin Hamiltonian

ĤS . It acts only on the spin variables and is obtained by averaging the full Hamiltonian

over the lattice coordinates,

ĤS = Trf

{
Ĥ

}
. (1.7)

The nuclear spin Hamiltonian contains only nuclear spin operators and some phenomeno-

logical constants [Ern87]. In solid state NMR we are going to distinguish nuclear spin

interactions between external fields and internal fields, and the nuclear spin Hamiltonian

ĤS can be written

ĤS = Ĥext + Ĥ int , (1.8)

where

Ĥext = ĤZ + ĤRF and Ĥ int = ĤCS + ĤD + ĤJ + ĤQ , (1.9)

where ĤZ , ĤRF , ĤCS , ĤD, ĤJ , and ĤQ are Zeeman, radio-frequency field, chem-

ical shift, direct spin-spin, indirect spin-spin, and quadrupole interactions, respec-

tively.

If we assume a strong external magnetic field ~B0 (B0 À 1 T) thus the Zeeman

interaction ĤZ has the dominant contribution to the spin Hamiltonian ĤS :

ĤZ = − ~M · ~B0 , (1.10)

where ~M is the macroscopic magnetization of the nuclear spins Ii. All other terms (ex-

cept ĤQ) can be written as perturbations. If we assume the orientation of the external

magnetic field to the z-direction ~B0 = B0 ~ez of a laboratory system, equation (1.10) may

be expressed as

ĤZ = −
∑

i

γiB0 Î
i
z =

∑
i

ω0, i Î
i
z , (1.11)

where the Larmor frequency ω0, i of spin i is defined through the magnetogyric ratio γi

and the strength of the external magnetic field

ω0, i = − γiB0 . (1.12)

All measurements in this work were done under the external magnetic field B0 = 9.4 T

which corresponds to the Larmor frequency for protons 1H: ω0, 1H/2π = 400 MHz and for

carbons 13C: ω0, 13C/2π = 100 MHz.
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Radio-frequency (r.f.) field interaction ĤRF has the same form as the Zeeman

interaction

ĤRF (t) = −
∑

i

γi
~̂I i · ~B1(t) . (1.13)

The applied r.f. field ~B1 oscillate with the frequency ω1 and is normally linearly polarized

with the phase ϕ

~B1(t) = 2B1 cos(ω1t) [~ex cos ϕ + ~ey sinϕ] . (1.14)

In this conditions equation (1.13) can be written in the form:

ĤRF (t) = − 2 B1 cos(ω1t)
∑

i

γi

{
Î

i
x cos ϕ + Î

i
y sinϕ

}
. (1.15)

To solve the density operator equation (1.2), it is advisable to make the r.f. field Ham-

iltonian time independent by the transformation in to the rotating frame. In general a

Hamiltonian Ĥ(t) = ĤZ+Ĥ1(t) can be transformed to the ĤZ-interaction representation

by the transformation [SR94]

Ĥ
r

= e iĤZ t Ĥ(t) e−iĤZ t = ĤZ + e iĤZ t Ĥ1(t) e−iĤZ t . (1.16)

The transformation of the r.f. field Hamiltonian to the rotating frame as follows from the

equation (1.16) can be written as

Ĥ
r
RF = e iĤZ t ĤRF (t) e−iĤZ t . (1.17)

After assumption ĤZ =
∑

i ω0, i Î
i
z (see equation (1.11)) and the basics trigonometric

relations, equation (1.17) may be expressed as

Ĥ
r
RF = − 2 B1 cos(ω1t)

∑
i

γi

{
Î

i
x cos(ω0, i t − ϕ) − Î

i
y sin(ω0, i t − ϕ)

}
. (1.18)

Further mergence of the trigonometric functions in the equation (1.18) will lead to the

equation which contains two sets of coefficients ω1 + ω0, i, ω1 − ω0, i as an arguments in

the cos, sin functions, respectively. Choosing ω1 ' ω0, i, the oscillations at frequencies

ω1+ω0, i ' 2 ω0, i can be neglected since the nuclear magnetization is influenced appreciably

only by fields rotating with the angular frequency close to the nuclear Larmor frequency

ω0, i. It can be written that

Ĥ
r
RF = −B1

∑
i

γi

{
Î

i
x cos(Ωi t + ϕ) + Î

i
y sin(Ωi t + ϕ)

}
, (1.19)
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where Ωi = ω1 −ω0, i is the offset with respect to the carrier frequency ω1. If the spins are

in resonance (Ωi ' 0) the r.f. field Hamiltonian became explicitly time independent and

it may be written in the form of

Ĥ
r
RF = −B1

∑
i

γi

{
Î

i
x cos(ϕ) + Î

i
y sin(ϕ)

}
. (1.20)

The chemical shift Hamiltonian ĤCS describes the shielding of the nuclear spin from

the external ~B0 field by the electron clouds. Due to the strong ~B0 field the orbital angular

momentum of the electron cloud is partially aligned in the external field direction which

generate local field ~BS scaled with the ~B0 field, ~BS = σ̃ ~B0. Under such conditions the

Hamiltonian of the chemical shift leads ([Meh83], p.11 and Appendix A):

ĤCS =
∑

i

γi
~̂I i · σ̃ i,LF · ~B0 = −

∑
i

ω0, i

{
Î

i
x σ i,LF

xz + Î
i
y σ i,LF

yz + Î
i
z σ i,LF

zz

}
. (1.21)

The ~B0 field was chosen to the z-direction (0,0,B0). The σ̃ i,LF represent the chemical-shift

(CS) tensor in the laboratory-frame representation with elements σ̃ i,LF
αβ (α, β = x, y, z). In

the case of high external fields (B0 À 1 T), local fields felt by 1H, 2H, 13C, 15H, 19F, 29Si,

or 31P nuclei are smaller compared with B0 field and CS Hamiltonian (equation (1.21))

can be simplified assuming first-order perturbation theory so

ĤCS = −
∑

i

ω0, iÎ
i
z σ i,LF

zz . (1.22)

The asymmetric components 1
2 (σ̃−σ̃T) of the CS tensor σ̃ contribute to the resonance fre-

quency shift only in the second order and can be usually neglected ([Meh83], Appendix C).

The symmetric part of the CS tensor 1
2 (σ̃ + σ̃T) is characterized most conveniently in the

coordinate system in which it is diagonal. This is the ’principal axes system’ (PAS). For

polar coordinate system where ϕ and ϑ are the polar coordinates of ~B0 in PAS, equation

(1.22) with the CS tensor σ̃ and its eigenvalues σ PAS
xx , σ PAS

yy , and σ PAS
zz , may be for a single

spin written [SR94] as

ĤCS =
{−ω0 σiso + 1

2 δ (3 cos2 ϑ − 1 − η sin2 ϑ cos 2ϕ)
}

Îz , (1.23)

where

σiso = 1
3

{
σ PAS

xx + σ PAS
yy + σ PAS

zz

}
δ = −ω0

(
σ PAS

zz − σiso

)
(1.24)

η =
σ PAS

yy − σ PAS
xx

σ PAS
zz − σiso
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are the isotropic chemical shift parameter, the anisotropy parameter and the asymmetry

parameter, respectively. The first part of the equation (1.23) corresponds to an isotropic

frequency and the second part to an anisotropic frequency. To make the CS interaction

independent on the magnetic field B0 it is useful to measure it in dimensionless units

independent to each nucleus (ω0, i . 10−6). The scale is called ppm-scale. The typical

values for protons 1H lays between 0 and 10 ppm.

The direct spin-spin interaction among spin i and j can be described by dipolar

Hamiltonian ĤD according to the Correspondence Principle

ĤD = −
∑
i<j

µ0~
4π

γiγj

3
(
~̂I i · ~e ij

r

) (
~̂I j · ~e ij

r

)
− ~̂I i · ~̂I j

|~rij |3
(1.25)

=
∑
i<j

~̂I i · D̃ ij · ~̂I j , (1.26)

where ~rij determines the vector from nucleus i to nucleus j with its basis vector

~e ij
r = ~rij/ |~rij |. D̃

ij
represents the dipolar coupling tensor in the appropriate base defined

through ~e ij
r vector. The dipolar-coupling constant is measured in the angular frequency

units and is defined as

dij =
µ0~
4π

γiγj

r3
ij

. (1.27)

For example, we calculate that for 1H − 1H spin pair in a CH2 group

(γ1H = 2.675 × 108 T−1s−1) with a distance of 1.8 Å (0.18 nm), the coupling strength

is d1H−1H = 105.4 kHz × (2.675)2/ (1.8)3 = 2π × 20.6 kHz. In the case of high static

field (similar like for the CS interaction) only those components of the Hamiltonian con-

tribute to the spectrum in the first order approximation which are time independent and

the Hamiltonian defined by equation (1.25) can be truncated. For homonuclear dipolar

interactions between spins Ii the truncated Hamiltonian can be written [Meh83] as

Ĥ
II
D = −

∑
i<j

d II
ij

1
2

(
3 cos2 ϑij − 1

) (
3 Î

i

zÎ
j

z − ~̂I i · ~̂I j
)

. (1.28)

Angle ϑij is the angle between the magnetic field B0 and the vector ~e ij
r connecting spin

Ii and Ij (Index {II} on the dipolar-coupling constant dij represent the equivalence of

nuclei: γi = γj = γI). The truncated Hamiltonian of heteronuclear dipolar couplings is

given by (Ii and Si spins)

Ĥ
IS
D = −

∑
i,j

d IS
ij

1
2

(
3 cos2 ϑij − 1

)
2 Î

i
zŜ

j
z . (1.29)
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The indirect spin-spin coupling (J-coupling), which result from electron-nuclear

interactions have the form

ĤJ = −
∑
i<j

~̂I i · J̃ ij · ~̂I j , (1.30)

where J̃
ij

is the indirect spin-spin coupling tensor. On contrary to the direct coupling

between spins (dipolar coupling) the J-coupling provide an information about the con-

nectivities of the electron clouds surrounding nuclei to the neighboured nuclear spins Ii.

Usually it is very weak (≈ 100Hz) and in the solid-state NMR it can be neglected. In liq-

uids, in the case of high static external field B0 only the scalar component of the J-coupling

tensor (Jij = 1
3Tr{J̃}) contribute to the spectrum and the time independent part of the

Hamiltonian ’secular part’ reads:

ĤJ = −
∑
i<j

Jij Î
i
z Î

j
z . (1.31)

Nuclei with Ii ≥ 1 generates electric field gradients with the nuclear quadrupole

moment Qi and their interaction with other nuclei can be described by the Hamiltonian

ĤQ =
∑

i

eQi

2Ii(2Ii − 1)~
~̂I i · Ṽ i · ~̂I i , (1.32)

where Ṽ
i
is the electric field gradient tensor at the site of nucleus i and e is the elementary

charge. After averaging (B0 À 1 T) the secular part of the quadrupolar Hamiltonian

can be written in the form [SR94] of

ĤQ =
∑

i

eQi

2Ii(2Ii − 1)~
V i, LF

zz
1
2

(
3 Î

i

z Î
i

z − ~̂I i · ~̂I i
)

. (1.33)

Typical values for quadrupolar coupling are in the range 200 kHz−2 GHz (Br, I, As, . . . ).

In this work the quadrupolar coupling has no importance because we were concentrated

to the nuclei with spin I = 1
2 and in such cases it vanishes.

1.2 Equilibrium density operator

The density operator represents a valid synthesis of quantum mechanics with statistical

mechanics. In thermal equilibrium at a temperature T and with Hamiltonian Ĥ of the

system, the density operator of the spin system is analogous to the classical Boltzmann

distribution (we will reintroduce for a moment ~ into Hamiltonian Ĥ in order to obtain

unitless ratio ~γB0/kBT )

ρ̂eq =
e−~Ĥ/kBT

Z
with Z = Tr

{
e−~Ĥ/kBT

}
, (1.34)
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where kB is the Boltzmann constant. The dominant contribution to the spin Hamiltonian

Ĥ has the Zeeman interaction (equation (1.11)) for a B0 fields stronger than 1 Tesla and

for individual spins can be written

ρ̂ i
eq =

e
− ~ ω0, i

kBT
Î

i
z

Zi
. (1.35)

At temperatures above 1 K in the fields currently available |~ ω0| À kBT , exponential

function in equation (1.35) can be expanded so that the quadratic and all higher terms

vanish compared to the linear term

e
− ~ ω0, i

kBT
Î

i
z ' 1̂1

i − ~ ω0, i

kBT
Î

i
z . (1.36)

The denominator of equation (1.35) corresponds to all possible states of the system 2Ii +1

and for N equivalent spins equilibrium density operator takes a form

ρ̂eq ' N

(2I + 1)N

(
1̂1 − ~ ω0

kBT
Îz

)
. (1.37)

The unity operator 1̂1 commutes with all operators and is irrelevant in most cases. Ac-

cording to equation (1.37) it can be defined the initial density operator of the system

so

ρ̂(0) def= cÎz , (1.38)

where c = −~ ω0/kBT .

1.3 Average Hamiltonian theory

In NMR the spin interaction Hamiltonian is usually time-dependent and it is much more

convenient to describe an experiment by the average Hamiltonian ([Hae76]) which repre-

sent the ’average’ motion of the spin system. Most of the multiple quantum experiments

can be described by an average Hamiltonian theory and this is the goal of this work.

In general the Hamiltonian in the rotating frame is split into two parts (equation (1.8))

Ĥ = Ĥext(t) + Ĥ int , (1.39)

where Ĥext and Ĥ int are defined by the equation (1.9). To find the solution for the density

operator equation (equation (1.2)) one has to derive the time evolution propagator

Û(t) = T̂ e
−i

t∫
0

dt′(Ĥext(t′)+Ĥint)
. (1.40)
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T̂ is the Dyson time-ordering operator (see also equation (1.4)) defined through the fol-

lowing relations

T̂
{

Ĥ(t1)Ĥ(t2)
}

=


 Ĥ(t1)Ĥ(t2) for t1 > t2

Ĥ(t2)Ĥ(t1) for t1 < t2 .
(1.41)

Now we attempt to separate the effects of explicitly time-independent Hamiltonian Ĥ int

and time-dependent Hamiltonian Ĥext(t) and to divide the propagator from the equation

(1.40) into two products

Û(t) = Û1(t)Û int(t) (1.42)

with

Û1(t) = T̂ e
−i

t∫
0

Ĥext(t′) dt′
(1.43)

and

Û int(t) = T̂ e
−i

t∫
0

ˆ̃H(t′) dt′
, (1.44)

where Û1(t) depends only on the perturbation Ĥext(t).
ˆ̃H(t) in equation (1.44) is the

Hamiltonian in the time-dependent interaction representation with respect to Ĥext(t),

often called the toggling frame. To assume Ĥ Hermitan it follows Û
+
(t) = Û

−1
(t) and

the initially time-dependent toggling frame Hamiltonian can be written

ˆ̃H(t) = Û
−1
1 (t) Ĥ int Û1(t) . (1.45)

We can further assume, that the external field may be periodic with a period τc i.e.

Ĥext(t + n τc) = Ĥext(t); n = 0, 1, 2, . . . (1.46)

which is for our cases good fulfilled (see chapter 2). From equation (1.46) follows

Û1(n τc) = Û
n
1 (τc) (1.47)

and it also leads to a periodicity of toggling frame Hamiltonian with

ˆ̃H(t) = ˆ̃H(t + n τc) (1.48)

and

Û int(n τc) = Û
n
int(τc) . (1.49)

If in addition the external field is cyclic in the sense

Û1(τc) = 1̂1 , (1.50)
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the general propagator Û(τc) (equation (1.42)) is described by the one cycle propagator

Û int(τc) i.e.

Û(τc) = Û int(τc) and Û(n τc) = Û
n
int(τc) . (1.51)

Our goal is to express equation (1.44) in the sense

Û int(τc) = e−i ˆ̄Hτc , (1.52)

where ˆ̄H is an average Hamiltonian and it can be divided into contributions from different

orders

ˆ̄H = ˆ̄H (0) + ˆ̄H (1) + ˆ̄H (2) + . . . . (1.53)

Using Magnus expansion [Ern87] which forms the basis of average Hamiltonian theory it

can be written

ˆ̄H (0) =
1
τc

τc∫
0

dt ˆ̃H(t) (1.54)

ˆ̄H (1) =
−i

2τc

τc∫
0

dt2

t2∫
0

dt1[
ˆ̃H(t2),

ˆ̃H(t1)] (1.55)

ˆ̄H (2) = − 1
6τc

τc∫
0

dt3

t3∫
0

dt2

t2∫
0

dt1

{
[ ˆ̃H(t3), [

ˆ̃H(t2),
ˆ̃H(t1)]]

+ [ ˆ̃H(t1), [
ˆ̃H(t2),

ˆ̃H(t3)]]
}

. (1.56)

In most cases multiple-pulse sequences are designed to remove higher terms ˆ̄H (1), . . .

from average Hamiltonian and only zero-order ˆ̄H (0) term survive. Zero-order term has a

particularly simple form. It is just the time average of the toggling frame Hamiltonian ˆ̃H(t)

and it has the most importance for the multiple-pulse sequences which we will investigate

in this work.

1.4 Dipolar interaction and irreducible tensors

In this section we would like to represent dipolar Hamiltonian introduced at the page 10

in another form i.e. with the help of irreducible spherical tensors. This representation of

spin Hamiltonian is much more convenient in the case of magic-angle-spinning experiment

described in the section 1.6.
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The spin interaction Hamiltonian may be expressed in the terms of irreducible spherical

tensors as [Meh83, Spi78, SR94]

Ĥ =
2∑

k=0

+k∑
q=−k

(−1)q Ak,qT̂ k,−q , (1.57)

where Ak,q contains all lattice and T̂ k,q all spin variables. Due to the fact that the spin

interactions in NMR are expressed by second rank tensors the summation in equation

(1.57) goes only until k = 2. In the high field case (B0 À 1 T) all terms with q 6= 0

are neglected in the first order approximation and only secular terms (q = 0) remains.

In addition antisymmetric part with k = 1 of spin interactions does not contribute to

the spectrum in the first order and can also be neglected ([Meh83] p.41). Under these

conditions equation (1.57) is reduced to

Ĥ (0) = A0,0T̂ 0,0 + A2,0T̂ 2,0 . (1.58)

In the case of dipolar coupling due to the symmetry of dipolar coupling tensor D̃

A0,0 = 0 (A0,0 = − 1√
3
Tr{Dij}) and equation (1.58) for homonuclear coupling may be

expressed in the form1

ĤD = −
∑
i<j

d II
ij Rij

2,0T̂
ij
2,0 (1.59)

with

Rij
2,0 =

√
3
2

(
3 cos2 ϑij − 1

)
(1.60)

T̂
ij
2,0 = 1√

6

(
3 Î

i

z Î
j

z − ~̂I i · ~̂I j
)

. (1.61)

Rij
2,0 contains only pure geometrical variables and d II

ij is the dipolar-coupling constant de-

fined by equation (1.27). With the help of spherical harmonics Y2,q, geometrical parameter

R2,q can be defined in more general way

R2,q =
√

24 π
5 Y2,q . (1.62)

Definitions of Yk,q can be found in [SR94] p.451.

1We will not use the mark (0) for secular dipolar Hamiltonian to prevent interchange it with zero order

average Hamiltonian using in Magnus expansion series (see equation (1.54))
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Figure 1.1: Schematic picture of one pulse experiment. The r.f. pulse is oriented in x-direction

and rotates the magnetization in rotating frame about 90 o (π
2 ).

1.5 One pulse experiment

The most simplest experiment in NMR is an one pulse experiment, schematically showed

in Figure 1.1. The interactions between spins can be detected in the detection period just

after the excitation of the system with the r.f. pulse in detection period. To describe an

experiment we will assume an ensemble of equivalent spins Ii = 1
2 where the initial state

of the system is defined through the initial density operator (equation (1.38)). The effect

of r.f. pulse in the rotating frame is described by the equation (1.20) and using equations

(1.3−1.5) the density operator just after the r.f. pulse applied in the x -direction has the

form

ρ̂(trf) = e iγB1trfÎx cÎz e−iγB1trfÎx . (1.63)

If the strength B1 and the duration trf of the r.f. pulse matches the condition

γB1trf =
π

2
, (1.64)

the pulse rotate the magnetization about 900 (left handed sense rotation around x -axis

using the definitions in equation (1.20) and (1.11)) equation (1.63) may be rewritten

ρ̂(trf) = ρ̂(0+) = cÎy . (1.65)

The state prepared by the initial pulse now decays due to the Zeeman interaction an

internal spin interaction according to the Liouville-von Neumann equation

d

dt
ρ̂(t) = −i[ĤZ + Ĥ int, ρ̂(t)] (1.66)

and the NMR decay signal can be obtained in the α (α = x, y) direction of the rotating

frame as

Sα(t) =
Tr

{
Îαρ̂(t)

}
Tr

{
Îzρ̂(0)

} . (1.67)
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Figure 1.2: The shift of frequency due to isotropic chemical shift interaction.

Let us assume only isotropic chemical shift interaction (ωiso
CS = ω0σiso) from internal

Hamiltonian Ĥ int. The density operator for a single spin after the x -pulse at t > trf can

be found

ρ̂(t) = e iωiso
CSt Îz ρ̂(0+)e−iωiso

CSt Îz

= c
[
Îy cos(ωiso

CSt) + Îx sin(ωiso
CSt)

]
. (1.68)

To evaluate the NMR signal from equation (1.68), which corresponds to the magnetization,

with the help of equation (1.67) we will get

Sy(t) = cos(ωiso
CSt) (1.69)

and

Sx(t) = sin(ωiso
CSt) (1.70)

for a signal detected in the y,x-direction, respectively. Due to the strong magnetic field

B0 applied to the system, NMR signal relax with the typical relaxation time T2 and is

called FID (free induction decay). In modern NMR spectrometers the acquisition of both

signals (equation (1.69) and (1.70)) at the same time often called quadrature detection is

possible. After digitalization and complex fourier transformation of the data we will get

a spectrum shown in Figure 1.2.

1.6 Magic Angle Spinning

One of the experimental technique to improve the resolution of NMR spectra is magic-

angle-spinning (MAS). The sample rotates about an axis which is tilted by an angle ϑm
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Figure 1.3: a) Schematic description of MAS where rotor axis is tilted from the ~B0 field by the

angle ϑm = 54.7◦. b) Relative orientation of PAS and LabS under sample rotation described by the

angle Ωij
PL(t), which is built up by two successive rotational transformations with angles Ωij

PR and

ΩRL(t).

(called ’magic angle’) with respect to the magnetic field ~B0 (see Figure 1.3a). It was

noted independently by Andrew ([And58]) and Lowe ([Low58]) that in such a case dipolar

interactions and chemical shift anisotropy are averaged out from the spectrum and usually

only narrow isotropic lines remains. If the spinning rate ωr of the sample is much larger

than the anisotropic spin interaction the spinning sidebands2 are well separated from the

isotropic lines and became vanishingly small with increasing ωr. We are going to consider

only dipolar spin interactions in this section because this is of main interest in this work.

To derive dipolar Hamiltonian under MAS lets start with a little bit different repre-

sentation of geometrical part of the Hamiltonian used in equations (1.59) and (1.60)

Rij
2,0 = √

6 D(2)
0,0(Ω

ij
PL) , (1.71)

where the Wigner rotation matrices D(2)
k,q can be found in Appendix B. The Euler angle

Ωij
PL = (ϕij

PL, ϑij
PL, ψij

PL) specify the relative orientation of two coordinate systems i.e.

Principle axis system (PAS) and Laboratory system (LabS). If the sample rotate about

an axis tilted by an angle ϑRL from the main field ~B0 director the geometrical part Rij
2,0

became time dependent Rij
2,0(t). It is convenient to describe it by two successive rota-

tions (see Figure 1.3b) and by the time dependent rotation matrix D(2)
0,0(t). According to

2Additional lines in the spectrum originating from the sample rotation, separated from the isotropic

line exactly at the rotor frequency intervals.
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equation (B.2) it can be written as

D(2)
0,0(Ω

ij
PL(t)) =

2∑
q=−2

D(2)
0,q(Ω

ij
PR)D(2)

q,0(ΩRL(t)) , (1.72)

where Ωij
PR corresponds to the relative orientation of PAS and Rotor system and ΩRL(t)

describe the rotation of the rotor seen from the Laboratory system through the Wigner

matrices (see equation (B.1))

D(2)
q,0(ΩRL(t)) = e−iq ϕRL(t) d

(2)
q,0(ϑRL) . (1.73)

Factors d
(2)
q,0 are defined in Table B.1. Due to the fix angle ϑRL in Rotor system the time

dependence in equation (1.73) is introduced through an angle ϕRL(t) = ϕ0 +ωr t with the

starting point ϕ0. Combining equations (1.71−1.73) we will get

Rij
2,0(t) =

2∑
q=−2

√
6 D(2)

0,q(Ω
ij
PR) e−iq ϕ0 d

(2)
q,0(ϑRL) e−iq ωr t , (1.74)

where Rij
2,0(t) describes the time dependence of dipolar Hamiltonian:

ĤD(t) = −
∑
i<j

d II
ij Rij

2,0(t) T̂
ij
2,0 . (1.75)

It is immediately evident from equation (1.74) that rotational sidebands appear at mul-

tiples of the frequency ωr and 2ωr away from the central isotropic lines (see Figure 1.4).

Before proofing this aspect further, let us go back to the rapid spinning case. If ωr is

very large (ωr À ||ĤD||) or stroboscopic observation at time intervals τ = n 2π/ωr is per-

formed, only the time independent part (with q = 0) of Rij
2,0(t) in equation (1.74) survives,

i.e.

R̄ij
2,0 = d

(2)
0,0(ϑRL)R2,0(Ω

ij
PR) . (1.76)

In this case, the time independent dipolar Hamiltonian

ˆ̄HD = − 1
2

(
3 cos2 ϑRL − 1

) ∑
i<j

d II
ij R2,0(Ω

ij
PR) T̂

ij
2,0 (1.77)

governs the spectrum. It is evident from equation (1.77) that for the angle ϑRL :=

ϑm = arccos(
√

1
3
) .= 54.7◦ called ’magic angle’ the dipolar coupling Hamiltonian vanish

and only isotropic part of the secular Hamiltonian remain ([Meh83]).

In the case of moderate spinning speed ωr ' ||ĤD|| dipolar coupling influence the

spectrum and the spinning sidebands become visible. Analytical description of this situa-

tion is for the behaviour of the spin system with many spins usually very complicated due
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to the complexity of the dipolar Hamiltonian in equation (1.75). Therefore it will be made

only for two dipolar coupled spins-1/2 . After applying 90◦-pulse in the x-direction of the

rotating frame the initial state of the system for Ii and Ij spins is according to equation

(1.65) given by

ρ̂(0+) = c
(
Î

i
y + Î

j
y

)
. (1.78)

The time evolution of the density matrix is described by the Liouville-von Neumann equa-

tion (1.2) with its formal solution in equation (1.3). The Dyson time-ordering operator

in equation (1.4) has for two spin system no importance and the Liouville-von Neumann

equation can be formally solved (see also Table A.1 and equation (A.4)):

ρ̂(t) = e
−i

t∫
0

ĤD(t′) dt′
ρ̂(0+) e

i
t∫
0

ĤD(t′) dt′

= c e
i

t∫
0

dt′ d II
ij Rij

2,0(t′)T̂ ij
2,0

(
Î

i
y + Î

j
y

)
e
−i

t∫
0

dt′ d II
ij Rij

2,0(t′)T̂ ij
2,0

(1.79)

= c
(
Î

i
y + Î

j
y

)
cos


 t∫

0

ωij
D(t′) dt′


 − 2c

(
T̂

ij
2,1 − T̂

ij
2,−1

)
sin


 t∫

0

ωij
D(t′) dt′




with

ωij
D(t) =

√
3
8
d II

ij Rij
2,0(t) . (1.80)

The products with T̂
ij
2,±1 have no influence on the signal detected in α = x, y direction of

the rotating frame because their trace vanish

Tr
{

Î
i
α T̂

ij
2,±1

}
= Tr

{
Î

j
α T̂

ij
2,±1

}
= 0 (1.81)

and can be neglected. According to equation (1.67) the NMR decay signal in the

y-direction of the rotating frame can be obtained trough the trace:

S MAS
y (t) =

Tr
{

(Î
i
y + Î

j
y )ρ̂(t)

}
Tr

{
(Î

i
z + Î

j
z )ρ̂(0)

} = cos


 t∫

0

ωij
D(t′) dt′


 . (1.82)

To calculate the integral of the ωij
D(t) function defined by equation (1.80) it is convenient

to neglect initial starting point of the rotor ϕ0 = 0 (see equation (1.74)). Also coefficient

dq,0(ϑm) with q = 0 under MAS conditions vanish and equation (1.82) can be solved

[Got95]

S MAS
y (t) =

〈
cos

{
3
2

d II
ij

ωr

[√
2 sin(2ϑij) sin( 1

2ωrt) cos(ψij + 1
2ωrt)

− 1
2 sin2(ϑij) sin(ωrt) cos(2ψij + ωrt)

]}〉
, (1.83)
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Figure 1.4: Simulated spinning sideband pattern of single MAS experiment for different ratios

between rotational frequency ωr and dipole-dipole coupling d II
ij ( ωr

d II
ij

). Parameter a represents the

amplitude of the highest point in each spectrum. Theoretical signal intensity (see equation (1.83))

is multiplied with Gaussian decay function to simulate more or less experimental FID.

where 〈. . .〉 means the powder averaging over the orientation of the dipolar coupled spin

pairs. Analysing equation (1.83) it can be directly seen that for times t = k · τr (k ∈ N)

the argument of the cos function vanish because sin(1
2ωrt) = 0 as well as sin(ωrt) = 0

so the signal becomes maximal for this time points. In addition intensity of the signal

strongly depends on the orientation of the PAS to the rotor system. If PAS is oriented

along the rotor axes i.e. ϑij = 0 signal will be constant and no rotor modulation can be
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seen. For another orientation of the PAS system rotor modulation of the signal will be

already preset. The Fourier transformation of equation (1.83) directly leads to the NMR

spectrum with the sideband pattern. Simulated results3 for powder sample are shown in

Figure 1.4 for different ratios between rotational frequency ωr and dipolar coupling d II
ij .

Static spectrum of dipolar coupled spin-1/2 pair ( ωr

dII
ij

= 0 in the figure) is clearly split to the

sideband pattern spectra with increasing spinning speed. At higher rotational frequencies

(ωr > 0.5 d II
ij ) central line already dominate the spectrum. Further increasing of ωr leads

to decreasing spinning sidebands as well as to increasing intensity of the central line as it

is indicated in Figure 1.4. Experimental results from MAS experiment can be found in

section 3.1.

1.7 Two-dimensional NMR spectroscopy

Up to now only one-dimensional (1D) spectroscopy has been considered where signal

intensity is plotted only along one frequency axis. One r.f. pulse has been used to disturbs

the spin system from its equilibrium. Just after that the system has been evolved under

the influence of local interactions as FID (free induction decay), S(t2), during time t2.

Fourier transformation of S(t2) converts the time-domain signal into a frequency domain

spectrum S(ω2). In most of the cases in liquids as well as in solids the spectrum of

desired sample is so complicated that lines of different nuclear species overlap and wished

information can not be obtained. To overcome this difficulty a second time period, t1,

between preparation and detection periods can be included. During this period, called

evolution period, nuclear motions may be different than during t2 which can eventually

influence the signal S(t2).

An intuitive scheme of two-dimensional (2D) experiment is shown in Figure 1.5. It

consist of four periods in general: preparation, evolution, mixing and detection. Mixing

period is not each time necessary ([Ern87, Rah86, Fre97]). The preparation period may

be formed by a series of r.f. pulses to convert the system to the desired state. It can also

consist of a delay long enough to allow the nuclei to reach equilibrium. During evolution

time t1 the system propagates under the influence of some internal Hamiltonians (see

section 1.1). To manipulate the spin system after the evolution period the mixing period

3Home made computer program has been used for performing integrations over angles ϑ, ψ in equa-

tion (1.83).
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Figure 1.5: Symbolic scheme for two-dimensional experiment.

can be included (see e.g. [SR94]). In the last period a signal is detected for each increment

of t1 separately, thus a 2D free induction decay signal S(t1, t2) is obtained. Double Fourier

transformation of S(t1, t2) will lead to the two-dimensional spectrum S(ω1, ω2).

So far the relaxation of the time-domain signal has not been considered. Including it

into FID artificial broadening of the spectrum lines is introduced. Fourier transformation

(FT) of such a damping signal leads to the spectrum which can be written in terms of

absorptive (A) and dispersive (D) components ([SR94]):

S(t2)
FT−→ S(ω2) = A(ω2) + i D(ω2) (1.84)

In most of the cases only absorptive part A(ω2) is interesting. It is positive definite and its

integral does not vanish. Dispersive lineshape D(ω2) exhibits antisymmetry and always

consists of positive and negative intensities which superimposes in a complicated way.

Thus, due to the antisymmetry, the integral over the dispersive lineshape vanishes. In

addition dispersive signal has broader wings than the absorbtion component, resulting in

a worse resolution.

In 2D spectroscopy it is often necessary to have purely absorptive spectrum

A(ω1)A(ω2), in short A1A2, in order to have optimum resolution and no spectral dis-

tortions. However, two successive Fourier transformations, over t2 (FT2) and t1 (FT1),

from the 2D time-domain signal S(t1, t2) give the spectrum

S(t1, t2)
FT1(FT2)−→ S(ω1, ω2) = (A1A2 − D1D2) + i (D1A2 − A1D2) (1.85)

which contains a mixture of absorptive and dispersive parts. To obtain pure absorptive

spectrum the data processing has to be modified (see [SR94] chapter 4, or [Ern87] chap-

ter 6). It is often required to obtain real (cosine), Sc, and imaginary (sine), Ss, part of

the time-domain signal according to t1. This can be written shortly ([SR94])

Sc(t1, t2) = cos(ω̃1t1) ei ω̃2t2

Ss(t1, t2) = i sin(ω̃1t1) ei ω̃2t2 ,
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where ω̃1 and ω̃2 represent schematically all components present. Performing separately

for both Sc and Ss Fourier transformation and setting dispersive part to zero, D2 = 0, the

real part of the spectrum corresponds to

Re [Sc,s(ω1, ω2)] = 1
2 (A(ω1 − ω̃1) ± A(ω1 + ω̃1)) A2 . (1.86)

Adding both Sc(ω1, ω2) and Ss(ω1, ω2) full absorption spectrum is obtained A1A2. This

technique is usually encountered in modern NMR instruments. It requires measuring of

both Sc(t1, t2) and Ss(t1, t2) which together represent a hypercomplex dataset ([Ern87]).

On the other hand an equivalent absorption spectrum can be obtained by TPPI (t
¯
ime-

p
¯
roportional p

¯
hase i

¯
ncrementation) method of the sampling of the data. This method will

be extensively used in this work. More details about TPPI used in the connection to a

multiple quantum spectroscopy can be found in sections 2.4.3, 2.5.2 and 4.2.

2D spectroscopy covers a huge part of NMR. It can be intuitively divided in three

categories: separation experiments, correlation experiments and exchange experiments.

Basis overview of these experiments can be found in the excellent monographs [SR94]

and [Ern87]. Besides this experimental techniques 2D spectroscopy enables also to study

coherent transitions which do not contribute to the magnetization and can not be detected

directly. This multiple quantum transitions/coherences can be detected indirectly during

time t1 with the help of 2D Fourier spectroscopy as will be seen in next chapters.


